home *** CD-ROM | disk | FTP | other *** search
MacBinary | 1995-07-20 | 8.3 KB | [TEXT/CWIE] |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was processed as: MacBinary
(archive/macBinary).
You can browse this item here: Normal.c
Confidence | Program | Detection | Match Type | Support
|
---|
66%
| dexvert
| Compact Compressed (Unix) (archive/compact)
| ext
| Supported |
10%
| dexvert
| MacBinary (archive/macBinary)
| fallback
| Supported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| MacBinary II, inited, Thu Jul 20 00:56:27 1995, modified Thu Jul 20 00:56:27 1995, creator 'CWIE', type ASCII, 7557 bytes "Normal.c" , at 0x1e05 636 bytes resource
| default (weak)
| |
99%
| file
| data
| default
| |
74%
| TrID
| Macintosh plain text (MacBinary)
| default
| |
25%
| TrID
| MacBinary 2
| default (weak)
| |
100%
| siegfried
| fmt/1762 MacBinary (II)
| default
| |
100%
| lsar
| MacBinary
| default
|
|
id metadata |
---|
key | value |
---|
macFileType | [TEXT] |
macFileCreator | [CWIE] |
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 00 08 4e 6f 72 6d 61 6c | 2e 63 00 00 00 00 00 00 |..Normal|.c......|
|00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000040| 00 54 45 58 54 43 57 49 | 45 01 00 00 00 00 00 00 |.TEXTCWI|E.......|
|00000050| 00 00 00 00 00 1d 85 00 | 00 02 7c ac 33 92 7b ac |........|..|.3.{.|
|00000060| 33 92 7b 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |3.{.....|........|
|00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 34 59 00 00 |........|....4Y..|
|00000080| 2f 2a 0d 4e 6f 72 6d 61 | 6c 2e 63 0d 73 74 61 74 |/*.Norma|l.c.stat|
|00000090| 69 73 74 69 63 61 6c 20 | 66 75 6e 63 74 69 6f 6e |istical |function|
|000000a0| 73 20 72 65 6c 61 74 65 | 64 20 74 6f 20 74 68 65 |s relate|d to the|
|000000b0| 20 6e 6f 72 6d 61 6c 20 | 64 69 73 74 72 69 62 75 | normal |distribu|
|000000c0| 74 69 6f 6e 2e 0d 41 6c | 73 6f 20 73 65 65 3a 20 |tion..Al|so see: |
|000000d0| 42 69 6e 6f 6d 69 61 6c | 2e 63 2c 43 68 69 53 71 |Binomial|.c,ChiSq|
|000000e0| 75 61 72 65 2e 63 2c 20 | 45 78 70 6f 6e 65 6e 74 |uare.c, |Exponent|
|000000f0| 69 61 6c 2e 63 2c 20 55 | 6e 69 66 6f 72 6d 2e 63 |ial.c, U|niform.c|
|00000100| 0d 0d 09 66 3d 4e 6f 72 | 6d 61 6c 50 64 66 28 78 |...f=Nor|malPdf(x|
|00000110| 29 3b 0d 09 70 3d 4e 6f | 72 6d 61 6c 28 78 29 3b |);..p=No|rmal(x);|
|00000120| 0d 09 78 3d 49 6e 76 65 | 72 73 65 4e 6f 72 6d 61 |..x=Inve|rseNorma|
|00000130| 6c 28 70 29 3b 0d 09 78 | 3d 4e 6f 72 6d 61 6c 53 |l(p);..x|=NormalS|
|00000140| 61 6d 70 6c 65 28 29 3b | 0d 09 66 3d 4e 6f 72 6d |ample();|..f=Norm|
|00000150| 61 6c 32 44 50 64 66 28 | 64 6f 75 62 6c 65 20 72 |al2DPdf(|double r|
|00000160| 29 3b 0d 09 70 3d 4e 6f | 72 6d 61 6c 32 44 28 72 |);..p=No|rmal2D(r|
|00000170| 29 3b 0d 09 72 3d 49 6e | 76 65 72 73 65 4e 6f 72 |);..r=In|verseNor|
|00000180| 6d 61 6c 32 44 28 70 29 | 3b 0d 09 72 3d 4e 6f 72 |mal2D(p)|;..r=Nor|
|00000190| 6d 61 6c 32 44 53 61 6d | 70 6c 65 28 29 3b 0d 4e |mal2DSam|ple();.N|
|000001a0| 6f 72 6d 61 6c 32 44 20 | 69 73 20 61 20 47 61 75 |ormal2D |is a Gau|
|000001b0| 73 73 69 61 6e 20 70 64 | 66 20 6f 76 65 72 20 74 |ssian pd|f over t|
|000001c0| 77 6f 20 64 69 6d 65 6e | 73 69 6f 6e 73 2c 20 69 |wo dimen|sions, i|
|000001d0| 6e 74 65 67 72 61 74 65 | 64 20 6f 76 65 72 20 61 |ntegrate|d over a|
|000001e0| 6c 6c 20 6f 72 69 65 6e | 74 61 74 69 6f 6e 73 2c |ll orien|tations,|
|000001f0| 0d 30 20 74 6f 20 32 b9 | 2e 20 72 20 69 73 20 74 |.0 to 2.|. r is t|
|00000200| 68 65 20 64 69 73 74 61 | 6e 63 65 20 66 72 6f 6d |he dista|nce from|
|00000210| 20 74 68 65 20 6f 72 69 | 67 69 6e 2c 20 5b 30 2c | the ori|gin, [0,|
|00000220| 49 6e 66 5d 2e 20 0d 0d | 09 42 6f 75 6e 64 65 64 |Inf]. ..|.Bounded|
|00000230| 4e 6f 72 6d 61 6c 49 6e | 74 65 67 65 72 73 28 64 |NormalIn|tegers(d|
|00000240| 69 73 74 72 69 62 75 74 | 69 6f 6e 2c 6e 2c 6d 65 |istribut|ion,n,me|
|00000250| 61 6e 2c 73 64 2c 6d 69 | 6e 2c 6d 61 78 29 3b 0d |an,sd,mi|n,max);.|
|00000260| 46 69 6c 6c 73 20 74 68 | 65 20 22 64 69 73 74 72 |Fills th|e "distr|
|00000270| 69 62 75 74 69 6f 6e 22 | 20 61 72 72 61 79 20 77 |ibution"| array w|
|00000280| 69 74 68 20 6e 20 6f 72 | 64 65 72 65 64 20 69 6e |ith n or|dered in|
|00000290| 74 65 67 65 72 73 20 73 | 6f 20 74 68 61 74 20 72 |tegers s|o that r|
|000002a0| 61 6e 64 6f 6d 20 73 61 | 6d 70 6c 65 73 0d 66 72 |andom sa|mples.fr|
|000002b0| 6f 6d 20 74 68 65 20 61 | 72 72 61 79 2c 0d 09 69 |om the a|rray,..i|
|000002c0| 3d 64 69 73 74 72 69 62 | 75 74 69 6f 6e 5b 6e 72 |=distrib|ution[nr|
|000002d0| 61 6e 64 28 6e 29 5d 3b | 0d 77 69 6c 6c 20 68 61 |and(n)];|.will ha|
|000002e0| 76 65 2c 20 61 73 20 6e | 65 61 72 6c 79 20 61 73 |ve, as n|early as|
|000002f0| 20 70 6f 73 73 69 62 6c | 65 2c 20 74 68 65 20 73 | possibl|e, the s|
|00000300| 70 65 63 69 66 69 65 64 | 20 64 69 73 74 72 69 62 |pecified| distrib|
|00000310| 75 74 69 6f 6e 2c 20 69 | 2e 65 2e 20 74 68 65 79 |ution, i|.e. they|
|00000320| 20 77 69 6c 6c 0d 62 65 | 20 73 61 6d 70 6c 65 73 | will.be| samples|
|00000330| 20 28 72 6f 75 6e 64 65 | 64 20 74 6f 20 69 6e 74 | (rounde|d to int|
|00000340| 65 67 65 72 29 20 64 72 | 61 77 6e 20 66 72 6f 6d |eger) dr|awn from|
|00000350| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 20 5b 6d | the int|erval [m|
|00000360| 69 6e 2d 2e 35 2c 6d 61 | 78 2b 2e 35 5d 2c 0d 77 |in-.5,ma|x+.5],.w|
|00000370| 68 65 72 65 20 6d 69 6e | 20 61 6e 64 20 6d 61 78 |here min| and max|
|00000380| 20 61 72 65 20 69 6e 74 | 65 67 65 72 73 2c 20 6f | are int|egers, o|
|00000390| 66 20 61 20 6e 6f 72 6d | 61 6c 20 64 69 73 74 72 |f a norm|al distr|
|000003a0| 69 62 75 74 69 6f 6e 20 | 77 69 74 68 20 74 68 65 |ibution |with the|
|000003b0| 20 73 70 65 63 69 66 69 | 65 64 0d 6d 65 61 6e 20 | specifi|ed.mean |
|000003c0| 61 6e 64 20 76 61 72 69 | 61 6e 63 65 2e 20 53 70 |and vari|ance. Sp|
|000003d0| 65 63 69 66 79 69 6e 67 | 20 61 6e 20 69 6e 66 69 |ecifying| an infi|
|000003e0| 6e 69 74 65 20 73 64 20 | 77 69 6c 6c 20 72 65 73 |nite sd |will res|
|000003f0| 75 6c 74 20 69 6e 20 61 | 20 75 6e 69 66 6f 72 6d |ult in a| uniform|
|00000400| 0d 64 69 73 74 72 69 62 | 75 74 69 6f 6e 20 6f 76 |.distrib|ution ov|
|00000410| 65 72 20 74 68 65 20 69 | 6e 74 65 72 76 61 6c 20 |er the i|nterval |
|00000420| 5b 6d 69 6e 2c 6d 61 78 | 5d 2e 20 28 54 68 69 73 |[min,max|]. (This|
|00000430| 20 69 73 20 64 65 74 65 | 63 74 65 64 20 61 73 20 | is dete|cted as |
|00000440| 61 20 73 70 65 63 69 61 | 6c 0d 63 61 73 65 20 61 |a specia|l.case a|
|00000450| 6e 64 20 70 65 72 66 6f | 72 6d 65 64 20 71 75 69 |nd perfo|rmed qui|
|00000460| 63 6b 6c 79 2e 29 20 4f | 6e 63 65 20 74 68 65 20 |ckly.) O|nce the |
|00000470| 64 69 73 74 72 69 62 75 | 74 69 6f 6e 20 61 72 72 |distribu|tion arr|
|00000480| 61 79 20 68 61 73 20 62 | 65 65 6e 20 66 69 6c 6c |ay has b|een fill|
|00000490| 65 64 2c 0d 72 61 6e 64 | 6f 6d 20 73 61 6d 70 6c |ed,.rand|om sampl|
|000004a0| 65 73 20 66 72 6f 6d 20 | 69 74 20 61 72 65 20 61 |es from |it are a|
|000004b0| 20 66 61 73 74 20 77 61 | 79 20 6f 66 20 67 65 6e | fast wa|y of gen|
|000004c0| 65 72 61 74 69 6e 67 20 | 62 6f 75 6e 64 65 64 20 |erating |bounded |
|000004d0| 47 61 75 73 73 69 61 6e | 20 6e 6f 69 73 65 0d 74 |Gaussian| noise.t|
|000004e0| 6f 20 62 65 20 61 64 64 | 65 64 20 74 6f 20 65 61 |o be add|ed to ea|
|000004f0| 63 68 20 70 69 78 65 6c | 20 6f 66 20 61 6e 20 69 |ch pixel| of an i|
|00000500| 6d 61 67 65 2e 20 4e 6f | 74 65 20 74 68 61 74 20 |mage. No|te that |
|00000510| 22 6d 65 61 6e 22 20 61 | 6e 64 20 22 73 64 22 20 |"mean" a|nd "sd" |
|00000520| 61 70 70 6c 79 20 6f 6e | 6c 79 0d 74 6f 20 74 68 |apply on|ly.to th|
|00000530| 65 20 75 6e 63 6c 69 70 | 70 65 64 20 75 6e 64 65 |e unclip|ped unde|
|00000540| 72 6c 79 69 6e 67 20 6e | 6f 72 6d 61 6c 20 64 69 |rlying n|ormal di|
|00000550| 73 74 72 69 62 75 74 69 | 6f 6e 2e 20 43 61 6c 6c |stributi|on. Call|
|00000560| 20 74 68 69 73 0d 09 6d | 65 61 6e 3d 4d 65 61 6e | this..m|ean=Mean|
|00000570| 57 28 64 69 73 74 72 69 | 62 75 74 69 6f 6e 2c 6e |W(distri|bution,n|
|00000580| 2c 26 73 64 29 3b 0d 74 | 6f 20 63 6f 6d 70 75 74 |,&sd);.t|o comput|
|00000590| 65 20 74 68 65 20 6d 65 | 61 6e 20 61 6e 64 20 73 |e the me|an and s|
|000005a0| 64 20 6f 66 20 79 6f 75 | 72 20 69 6e 74 65 67 65 |d of you|r intege|
|000005b0| 72 20 64 69 73 74 72 69 | 62 75 74 69 6f 6e 2e 20 |r distri|bution. |
|000005c0| 54 68 65 20 72 75 6e 74 | 69 6d 65 20 6f 66 20 0d |The runt|ime of .|
|000005d0| 42 6f 75 6e 64 65 64 4e | 6f 72 6d 61 6c 49 6e 74 |BoundedN|ormalInt|
|000005e0| 65 67 65 72 73 20 77 69 | 6c 6c 20 62 65 20 70 72 |egers wi|ll be pr|
|000005f0| 6f 70 6f 72 74 69 6f 6e | 61 6c 20 74 6f 20 6d 61 |oportion|al to ma|
|00000600| 78 2d 6d 69 6e 2b 31 2c | 20 61 6e 64 20 6e 65 61 |x-min+1,| and nea|
|00000610| 72 6c 79 20 69 6e 64 65 | 70 65 6e 64 65 6e 74 0d |rly inde|pendent.|
|00000620| 6f 66 20 6e 2e 20 49 74 | 20 74 61 6b 65 73 20 61 |of n. It| takes a|
|00000630| 62 6f 75 74 20 30 2e 33 | 20 73 20 6f 6e 20 61 20 |bout 0.3| s on a |
|00000640| 4d 61 63 20 49 49 63 69 | 20 66 6f 72 20 6d 61 78 |Mac IIci| for max|
|00000650| 2d 6d 69 6e 2b 31 3d 32 | 35 36 2e 0d 0d 43 6f 70 |-min+1=2|56...Cop|
|00000660| 79 72 69 67 68 74 20 28 | 63 29 20 31 39 38 39 2c |yright (|c) 1989,|
|00000670| 31 39 39 30 2c 31 39 39 | 31 2c 31 39 39 32 2c 31 |1990,199|1,1992,1|
|00000680| 39 39 35 20 44 65 6e 69 | 73 20 47 2e 20 50 65 6c |995 Deni|s G. Pel|
|00000690| 6c 69 0d 48 49 53 54 4f | 52 59 3a 0d 31 39 38 39 |li.HISTO|RY:.1989|
|000006a0| 09 64 67 70 20 77 72 6f | 74 65 20 69 74 2e 0d 34 |.dgp wro|te it..4|
|000006b0| 2f 38 2f 39 30 09 64 67 | 70 09 63 68 61 6e 67 65 |/8/90.dg|p.change|
|000006c0| 64 20 74 68 65 20 6e 61 | 6d 65 73 20 6f 66 20 74 |d the na|mes of t|
|000006d0| 68 65 20 72 6f 75 74 69 | 6e 65 73 2e 20 0d 09 09 |he routi|nes. ...|
|000006e0| 09 4d 61 64 65 20 73 75 | 72 65 20 74 68 61 74 20 |.Made su|re that |
|000006f0| 64 6f 6d 61 69 6e 20 65 | 72 72 6f 72 20 70 72 6f |domain e|rror pro|
|00000700| 64 75 63 65 73 20 4e 41 | 4e 2e 0d 36 2f 39 30 09 |duces NA|N..6/90.|
|00000710| 64 67 70 09 61 64 64 65 | 64 20 4e 6f 72 6d 61 6c |dgp.adde|d Normal|
|00000720| 53 61 6d 70 6c 65 28 29 | 0d 37 2f 33 30 2f 39 31 |Sample()|.7/30/91|
|00000730| 09 64 67 70 09 6e 6f 77 | 20 75 73 65 20 4e 41 4e |.dgp.now| use NAN|
|00000740| 20 64 65 66 69 6e 65 64 | 20 69 6e 20 56 69 64 65 | defined| in Vide|
|00000750| 6f 54 6f 6f 6c 62 6f 78 | 2e 68 0d 31 32 2f 32 38 |oToolbox|.h.12/28|
|00000760| 2f 39 31 20 64 67 70 20 | 73 70 65 64 20 75 70 20 |/91 dgp |sped up |
|00000770| 4e 6f 72 6d 61 6c 50 64 | 66 28 29 20 62 79 20 63 |NormalPd|f() by c|
|00000780| 61 6c 63 75 6c 61 74 69 | 6e 67 20 74 68 65 20 73 |alculati|ng the s|
|00000790| 63 61 6c 65 20 66 61 63 | 74 6f 72 20 6f 6e 6c 79 |cale fac|tor only|
|000007a0| 20 6f 6e 63 65 0d 31 32 | 2f 32 39 2f 39 31 20 64 | once.12|/29/91 d|
|000007b0| 67 70 20 65 78 74 72 61 | 63 74 65 64 20 63 6f 64 |gp extra|cted cod|
|000007c0| 65 20 74 6f 20 63 72 65 | 61 74 65 20 6e 65 77 20 |e to cre|ate new |
|000007d0| 72 6f 75 74 69 6e 65 20 | 55 6e 69 66 6f 72 6d 53 |routine |UniformS|
|000007e0| 61 6d 70 6c 65 2e 63 0d | 31 2f 31 31 2f 39 32 09 |ample.c.|1/11/92.|
|000007f0| 64 67 70 09 72 65 77 72 | 6f 74 65 20 4e 6f 72 6d |dgp.rewr|ote Norm|
|00000800| 61 6c 28 29 27 73 20 70 | 6f 6c 79 6e 6f 6d 69 61 |al()'s p|olynomia|
|00000810| 6c 20 65 76 61 6c 75 61 | 74 69 6f 6e 20 74 6f 20 |l evalua|tion to |
|00000820| 68 61 6c 76 65 20 74 68 | 65 20 6e 75 6d 62 65 72 |halve th|e number|
|00000830| 20 6f 66 20 6d 75 6c 74 | 69 70 6c 69 65 73 0d 09 | of mult|iplies..|
|00000840| 09 09 52 65 6e 61 6d 65 | 64 20 4e 6f 72 6d 61 6c |..Rename|d Normal|
|00000850| 50 44 46 28 29 20 74 6f | 20 4e 6f 72 6d 61 6c 50 |PDF() to| NormalP|
|00000860| 64 66 28 29 2e 0d 31 2f | 31 39 2f 39 32 09 64 67 |df()..1/|19/92.dg|
|00000870| 70 09 64 65 66 69 6e 65 | 64 20 74 68 65 20 63 6f |p.define|d the co|
|00000880| 6e 73 74 61 6e 74 73 20 | 4c 4f 47 32 20 61 6e 64 |nstants |LOG2 and|
|00000890| 20 4c 4f 47 50 49 20 69 | 6e 20 56 69 64 65 6f 54 | LOGPI i|n VideoT|
|000008a0| 6f 6f 6c 62 6f 78 2e 68 | 0d 09 09 09 41 64 64 65 |oolbox.h|....Adde|
|000008b0| 64 20 6d 6f 72 65 20 64 | 6f 6d 61 69 6e 20 74 65 |d more d|omain te|
|000008c0| 73 74 73 2c 20 72 65 74 | 75 72 6e 69 6e 67 20 4e |sts, ret|urning N|
|000008d0| 41 4e 20 69 66 20 6f 75 | 74 73 69 64 65 2e 20 0d |AN if ou|tside. .|
|000008e0| 09 09 09 41 64 64 65 64 | 20 6d 6f 72 65 20 63 68 |...Added| more ch|
|000008f0| 65 63 6b 73 20 74 6f 20 | 6d 61 69 6e 28 29 2e 0d |ecks to |main()..|
|00000900| 09 09 09 57 72 6f 74 65 | 20 4e 6f 72 6d 61 6c 32 |...Wrote| Normal2|
|00000910| 44 50 64 66 28 29 2c 4e | 6f 72 6d 61 6c 32 44 28 |DPdf(),N|ormal2D(|
|00000920| 29 2c 49 6e 76 65 72 73 | 65 4e 6f 72 6d 61 6c 32 |),Invers|eNormal2|
|00000930| 44 28 29 2c 61 6e 64 20 | 4e 6f 72 6d 61 6c 32 44 |D(),and |Normal2D|
|00000940| 53 61 6d 70 6c 65 28 29 | 2e 0d 32 2f 31 2f 39 32 |Sample()|..2/1/92|
|00000950| 09 64 67 70 09 52 65 64 | 65 66 69 6e 65 64 20 4e |.dgp.Red|efined N|
|00000960| 6f 72 6d 61 6c 32 44 50 | 64 66 28 72 29 20 74 6f |ormal2DP|df(r) to|
|00000970| 20 6e 6f 77 2c 20 6d 6f | 72 65 20 73 65 6e 73 69 | now, mo|re sensi|
|00000980| 62 6c 79 2c 20 74 72 65 | 61 74 20 72 20 61 73 20 |bly, tre|at r as |
|00000990| 74 68 65 20 72 61 6e 64 | 6f 6d 0d 09 09 09 76 61 |the rand|om....va|
|000009a0| 72 69 61 62 6c 65 2c 20 | 72 61 74 68 65 72 20 74 |riable, |rather t|
|000009b0| 68 61 6e 20 74 68 65 20 | 69 6d 70 6c 69 63 69 74 |han the |implicit|
|000009c0| 20 78 20 61 6e 64 20 79 | 2c 20 77 68 65 72 65 20 | x and y|, where |
|000009d0| 72 3d 73 71 72 74 28 78 | 5e 32 2b 79 5e 32 29 2e |r=sqrt(x|^2+y^2).|
|000009e0| 20 0d 09 09 09 50 72 65 | 76 69 6f 75 73 6c 79 2c | ....Pre|viously,|
|000009f0| 20 4e 6f 72 6d 61 6c 32 | 44 28 52 29 3d 49 6e 74 | Normal2|D(R)=Int|
|00000a00| 65 67 72 61 74 65 5b 32 | 20 50 69 20 72 20 4e 6f |egrate[2| Pi r No|
|00000a10| 72 6d 61 6c 32 44 50 64 | 66 28 72 29 2c 7b 72 2c |rmal2DPd|f(r),{r,|
|00000a20| 30 2c 52 7d 5d 0d 09 09 | 09 6e 6f 77 20 4e 6f 72 |0,R}]...|.now Nor|
|00000a30| 6d 61 6c 32 44 28 52 29 | 3d 49 6e 74 65 67 72 61 |mal2D(R)|=Integra|
|00000a40| 74 65 5b 4e 6f 72 6d 61 | 6c 32 44 50 64 66 28 72 |te[Norma|l2DPdf(r|
|00000a50| 29 2c 7b 72 2c 30 2c 52 | 7d 5d 2e 20 54 68 65 72 |),{r,0,R|}]. Ther|
|00000a60| 65 20 69 73 20 6e 6f 20 | 63 68 61 6e 67 65 0d 09 |e is no |change..|
|00000a70| 09 09 69 6e 20 4e 6f 72 | 6d 61 6c 32 44 28 29 2e |..in Nor|mal2D().|
|00000a80| 20 49 20 73 75 73 70 65 | 63 74 20 74 68 61 74 20 | I suspe|ct that |
|00000a90| 4e 6f 72 6d 61 6c 32 44 | 20 69 73 20 69 6e 20 66 |Normal2D| is in f|
|00000aa0| 61 63 74 20 74 68 65 20 | 52 61 6c 65 69 67 68 20 |act the |Raleigh |
|00000ab0| 64 69 73 74 72 69 62 75 | 74 69 6f 6e 2c 0d 09 09 |distribu|tion,...|
|00000ac0| 09 61 6e 64 20 49 20 77 | 69 6c 6c 20 72 65 6e 61 |.and I w|ill rena|
|00000ad0| 6d 65 20 69 74 20 69 66 | 20 74 68 69 73 20 69 73 |me it if| this is|
|00000ae0| 20 69 6e 20 66 61 63 74 | 20 74 68 65 20 63 61 73 | in fact| the cas|
|00000af0| 65 2e 0d 31 31 2f 31 33 | 2f 39 32 20 64 67 70 20 |e..11/13|/92 dgp |
|00000b00| 49 6e 76 65 72 73 65 4e | 6f 72 6d 61 6c 28 30 29 |InverseN|ormal(0)|
|00000b10| 20 6e 6f 77 20 72 65 74 | 75 72 6e 73 20 2d 49 4e | now ret|urns -IN|
|00000b20| 46 2c 20 61 6e 64 20 49 | 6e 76 65 72 73 65 4e 6f |F, and I|nverseNo|
|00000b30| 72 6d 61 6c 28 31 29 20 | 72 65 74 75 72 6e 73 20 |rmal(1) |returns |
|00000b40| 49 4e 46 2e 0d 31 32 2f | 31 35 2f 39 33 20 64 67 |INF..12/|15/93 dg|
|00000b50| 70 20 64 65 63 6c 61 72 | 65 64 20 73 6f 6d 65 20 |p declar|ed some |
|00000b60| 61 72 67 75 6d 65 6e 74 | 73 20 22 72 65 67 69 73 |argument|s "regis|
|00000b70| 74 65 72 22 2e 0d 33 2f | 32 36 2f 39 34 09 64 67 |ter"..3/|26/94.dg|
|00000b80| 70 09 61 64 64 65 64 20 | 42 6f 75 6e 64 65 64 4e |p.added |BoundedN|
|00000b90| 6f 72 6d 61 6c 49 6e 74 | 65 67 65 72 73 28 29 2e |ormalInt|egers().|
|00000ba0| 0d 09 09 09 41 73 6b 65 | 64 20 63 6f 6d 70 69 6c |....Aske|d compil|
|00000bb0| 65 72 20 74 6f 20 75 73 | 65 20 36 38 38 38 31 20 |er to us|e 68881 |
|00000bc0| 69 6e 73 74 72 75 63 74 | 69 6f 6e 73 20 66 6f 72 |instruct|ions for|
|00000bd0| 20 74 72 61 6e 73 63 65 | 6e 64 65 6e 74 61 6c 73 | transce|ndentals|
|00000be0| 2e 0d 2a 2f 0d 23 69 6e | 63 6c 75 64 65 20 22 56 |..*/.#in|clude "V|
|00000bf0| 69 64 65 6f 54 6f 6f 6c | 62 6f 78 2e 68 22 0d 76 |ideoTool|box.h".v|
|00000c00| 6f 69 64 20 42 6f 75 6e | 64 65 64 4e 6f 72 6d 61 |oid Boun|dedNorma|
|00000c10| 6c 49 6e 74 65 67 65 72 | 73 28 73 68 6f 72 74 20 |lInteger|s(short |
|00000c20| 2a 64 69 73 74 72 69 62 | 75 74 69 6f 6e 2c 6c 6f |*distrib|ution,lo|
|00000c30| 6e 67 20 6e 2c 64 6f 75 | 62 6c 65 20 6d 65 61 6e |ng n,dou|ble mean|
|00000c40| 2c 64 6f 75 62 6c 65 20 | 73 64 0d 09 2c 73 68 6f |,double |sd..,sho|
|00000c50| 72 74 20 6d 69 6e 2c 73 | 68 6f 72 74 20 6d 61 78 |rt min,s|hort max|
|00000c60| 29 3b 0d 0d 64 6f 75 62 | 6c 65 20 4e 6f 72 6d 61 |);..doub|le Norma|
|00000c70| 6c 50 64 66 28 72 65 67 | 69 73 74 65 72 20 64 6f |lPdf(reg|ister do|
|00000c80| 75 62 6c 65 20 78 29 0d | 2f 2a 20 47 61 75 73 73 |uble x).|/* Gauss|
|00000c90| 69 61 6e 20 70 64 66 2e | 20 5a 65 72 6f 20 6d 65 |ian pdf.| Zero me|
|00000ca0| 61 6e 20 61 6e 64 20 75 | 6e 69 74 20 76 61 72 69 |an and u|nit vari|
|00000cb0| 61 6e 63 65 2e 20 2a 2f | 0d 7b 0d 09 69 66 28 49 |ance. */|.{..if(I|
|00000cc0| 73 4e 61 6e 28 78 29 29 | 72 65 74 75 72 6e 20 78 |sNan(x))|return x|
|00000cd0| 3b 0d 09 72 65 74 75 72 | 6e 20 65 78 70 28 2d 30 |;..retur|n exp(-0|
|00000ce0| 2e 35 2a 28 78 2a 78 2b | 28 4c 4f 47 32 2b 4c 4f |.5*(x*x+|(LOG2+LO|
|00000cf0| 47 50 49 29 29 29 3b 0d | 7d 0d 0d 64 6f 75 62 6c |GPI)));.|}..doubl|
|00000d00| 65 20 4e 6f 72 6d 61 6c | 28 72 65 67 69 73 74 65 |e Normal|(registe|
|00000d10| 72 20 64 6f 75 62 6c 65 | 20 78 29 0d 2f 2a 0d 43 |r double| x)./*.C|
|00000d20| 75 6d 75 6c 61 74 69 76 | 65 20 6e 6f 72 6d 61 6c |umulativ|e normal|
|00000d30| 20 64 69 73 74 72 69 62 | 75 74 69 6f 6e 2e 20 46 | distrib|ution. F|
|00000d40| 72 6f 6d 20 41 62 72 61 | 6d 6f 77 69 74 7a 20 61 |rom Abra|mowitz a|
|00000d50| 6e 64 20 53 74 65 67 75 | 6e 20 45 71 2e 20 28 32 |nd Stegu|n Eq. (2|
|00000d60| 36 2e 32 2e 31 37 29 2e | 0d 45 72 72 6f 72 20 7c |6.2.17).|.Error ||
|00000d70| 65 7c 3c 37 2e 35 20 31 | 30 5e 2d 38 0d 2a 2f 0d |e|<7.5 1|0^-8.*/.|
|00000d80| 7b 0d 09 72 65 67 69 73 | 74 65 72 20 64 6f 75 62 |{..regis|ter doub|
|00000d90| 6c 65 20 50 2c 74 3b 0d | 09 0d 09 69 66 28 78 3c |le P,t;.|...if(x<|
|00000da0| 30 2e 30 29 20 72 65 74 | 75 72 6e 20 31 2e 30 2d |0.0) ret|urn 1.0-|
|00000db0| 4e 6f 72 6d 61 6c 28 2d | 78 29 3b 0d 09 74 3d 31 |Normal(-|x);..t=1|
|00000dc0| 2e 30 2f 28 31 2e 30 2b | 30 2e 32 33 31 36 34 31 |.0/(1.0+|0.231641|
|00000dd0| 39 2a 78 29 3b 0d 09 50 | 3d 28 30 2e 33 31 39 33 |9*x);..P|=(0.3193|
|00000de0| 38 31 35 33 30 2b 28 2d | 30 2e 33 35 36 35 36 33 |81530+(-|0.356563|
|00000df0| 37 38 32 2b 28 31 2e 37 | 38 31 34 37 37 39 33 37 |782+(1.7|81477937|
|00000e00| 2b 28 2d 31 2e 38 32 31 | 32 35 35 39 37 38 2b 31 |+(-1.821|255978+1|
|00000e10| 2e 33 33 30 32 37 34 34 | 32 39 2a 74 29 2a 74 29 |.3302744|29*t)*t)|
|00000e20| 2a 74 29 2a 74 29 2a 74 | 3b 0d 09 72 65 74 75 72 |*t)*t)*t|;..retur|
|00000e30| 6e 20 31 2e 30 2d 4e 6f | 72 6d 61 6c 50 64 66 28 |n 1.0-No|rmalPdf(|
|00000e40| 78 29 2a 50 3b 0d 7d 0d | 0d 64 6f 75 62 6c 65 20 |x)*P;.}.|.double |
|00000e50| 49 6e 76 65 72 73 65 4e | 6f 72 6d 61 6c 28 72 65 |InverseN|ormal(re|
|00000e60| 67 69 73 74 65 72 20 64 | 6f 75 62 6c 65 20 70 29 |gister d|ouble p)|
|00000e70| 0d 2f 2a 0d 49 6e 76 65 | 72 73 65 20 6f 66 20 4e |./*.Inve|rse of N|
|00000e80| 6f 72 6d 61 6c 28 29 2c | 20 62 61 73 65 64 20 6f |ormal(),| based o|
|00000e90| 6e 20 41 62 72 61 6d 6f | 77 69 74 7a 20 61 6e 64 |n Abramo|witz and|
|00000ea0| 20 53 74 65 67 75 6e 20 | 45 71 2e 20 32 36 2e 32 | Stegun |Eq. 26.2|
|00000eb0| 2e 32 33 2e 0d 45 72 72 | 6f 72 20 7c 65 7c 3c 34 |.23..Err|or |e|<4|
|00000ec0| 2e 35 20 31 30 5e 2d 34 | 2e 0d 2a 2f 0d 7b 0d 09 |.5 10^-4|..*/.{..|
|00000ed0| 72 65 67 69 73 74 65 72 | 20 64 6f 75 62 6c 65 20 |register| double |
|00000ee0| 74 2c 78 3b 0d 09 0d 09 | 69 66 28 49 73 4e 61 6e |t,x;....|if(IsNan|
|00000ef0| 28 70 29 29 72 65 74 75 | 72 6e 20 70 3b 0d 09 69 |(p))retu|rn p;..i|
|00000f00| 66 28 70 3c 30 2e 30 29 | 72 65 74 75 72 6e 20 4e |f(p<0.0)|return N|
|00000f10| 41 4e 3b 0d 09 69 66 28 | 70 3d 3d 30 2e 30 29 72 |AN;..if(|p==0.0)r|
|00000f20| 65 74 75 72 6e 20 2d 49 | 4e 46 3b 0d 09 69 66 28 |eturn -I|NF;..if(|
|00000f30| 70 3e 30 2e 35 29 20 72 | 65 74 75 72 6e 20 2d 49 |p>0.5) r|eturn -I|
|00000f40| 6e 76 65 72 73 65 4e 6f | 72 6d 61 6c 28 31 2e 30 |nverseNo|rmal(1.0|
|00000f50| 2d 70 29 3b 0d 09 74 3d | 73 71 72 74 28 2d 32 2e |-p);..t=|sqrt(-2.|
|00000f60| 30 2a 6c 6f 67 28 70 29 | 29 3b 0d 09 78 3d 74 2d |0*log(p)|);..x=t-|
|00000f70| 28 32 2e 35 31 35 35 31 | 37 2b 28 30 2e 38 30 32 |(2.51551|7+(0.802|
|00000f80| 38 35 33 2b 30 2e 30 31 | 30 33 32 38 2a 74 29 2a |853+0.01|0328*t)*|
|00000f90| 74 29 2f 28 31 2e 30 2b | 28 31 2e 34 33 32 37 38 |t)/(1.0+|(1.43278|
|00000fa0| 38 2b 28 30 2e 31 38 39 | 32 36 39 2b 30 2e 30 30 |8+(0.189|269+0.00|
|00000fb0| 31 33 30 38 2a 74 29 2a | 74 29 2a 74 29 3b 0d 09 |1308*t)*|t)*t);..|
|00000fc0| 72 65 74 75 72 6e 20 2d | 78 3b 0d 7d 0d 0d 64 6f |return -|x;.}..do|
|00000fd0| 75 62 6c 65 20 4e 6f 72 | 6d 61 6c 53 61 6d 70 6c |uble Nor|malSampl|
|00000fe0| 65 28 76 6f 69 64 29 0d | 7b 0d 09 72 65 74 75 72 |e(void).|{..retur|
|00000ff0| 6e 20 49 6e 76 65 72 73 | 65 4e 6f 72 6d 61 6c 28 |n Invers|eNormal(|
|00001000| 55 6e 69 66 6f 72 6d 53 | 61 6d 70 6c 65 28 29 29 |UniformS|ample())|
|00001010| 3b 0d 7d 0d 0d 64 6f 75 | 62 6c 65 20 4e 6f 72 6d |;.}..dou|ble Norm|
|00001020| 61 6c 32 44 50 64 66 28 | 64 6f 75 62 6c 65 20 72 |al2DPdf(|double r|
|00001030| 29 0d 2f 2a 20 47 61 75 | 73 73 69 61 6e 20 70 64 |)./* Gau|ssian pd|
|00001040| 66 20 6f 76 65 72 20 74 | 77 6f 20 64 69 6d 65 6e |f over t|wo dimen|
|00001050| 73 69 6f 6e 73 2c 20 69 | 6e 74 65 67 72 61 74 65 |sions, i|ntegrate|
|00001060| 64 20 6f 76 65 72 20 61 | 6c 6c 20 6f 72 69 65 6e |d over a|ll orien|
|00001070| 74 61 74 69 6f 6e 73 2c | 20 30 20 74 6f 20 32 b9 |tations,| 0 to 2.|
|00001080| 2e 20 2a 2f 0d 2f 2a 20 | 54 68 65 20 61 72 67 75 |. */./* |The argu|
|00001090| 6d 65 6e 74 20 69 73 20 | 74 61 6b 65 6e 20 74 6f |ment is |taken to|
|000010a0| 20 62 65 20 74 68 65 20 | 64 69 73 74 61 6e 63 65 | be the |distance|
|000010b0| 20 66 72 6f 6d 20 74 68 | 65 20 6f 72 69 67 69 6e | from th|e origin|
|000010c0| 2c 20 5b 30 2c 49 6e 66 | 5d 2e 20 2a 2f 0d 2f 2a |, [0,Inf|]. */./*|
|000010d0| 20 54 68 65 20 72 6d 73 | 20 69 73 20 31 20 2a 2f | The rms| is 1 */|
|000010e0| 0d 7b 0d 09 69 66 28 49 | 73 4e 61 6e 28 72 29 29 |.{..if(I|sNan(r))|
|000010f0| 72 65 74 75 72 6e 20 72 | 3b 0d 09 69 66 28 72 3c |return r|;..if(r<|
|00001100| 3d 30 2e 30 29 72 65 74 | 75 72 6e 20 30 2e 30 3b |=0.0)ret|urn 0.0;|
|00001110| 0d 09 72 65 74 75 72 6e | 20 32 2a 72 2a 65 78 70 |..return| 2*r*exp|
|00001120| 28 2d 72 2a 72 29 3b 0d | 7d 0d 0d 64 6f 75 62 6c |(-r*r);.|}..doubl|
|00001130| 65 20 4e 6f 72 6d 61 6c | 32 44 28 64 6f 75 62 6c |e Normal|2D(doubl|
|00001140| 65 20 72 29 0d 2f 2a 20 | 49 6e 74 65 67 72 61 6c |e r)./* |Integral|
|00001150| 20 6f 66 20 4e 6f 72 6d | 61 6c 32 44 50 64 66 28 | of Norm|al2DPdf(|
|00001160| 29 20 66 72 6f 6d 20 7a | 65 72 6f 20 74 6f 20 72 |) from z|ero to r|
|00001170| 2e 20 2a 2f 0d 7b 0d 09 | 69 66 28 49 73 4e 61 6e |. */.{..|if(IsNan|
|00001180| 28 72 29 29 72 65 74 75 | 72 6e 20 72 3b 0d 09 69 |(r))retu|rn r;..i|
|00001190| 66 28 72 3c 3d 30 2e 30 | 29 72 65 74 75 72 6e 20 |f(r<=0.0|)return |
|000011a0| 30 2e 30 3b 0d 09 72 65 | 74 75 72 6e 20 31 2e 30 |0.0;..re|turn 1.0|
|000011b0| 2d 65 78 70 28 2d 72 2a | 72 29 3b 0d 7d 0d 0d 64 |-exp(-r*|r);.}..d|
|000011c0| 6f 75 62 6c 65 20 49 6e | 76 65 72 73 65 4e 6f 72 |ouble In|verseNor|
|000011d0| 6d 61 6c 32 44 28 64 6f | 75 62 6c 65 20 70 29 0d |mal2D(do|uble p).|
|000011e0| 7b 0d 09 69 66 28 49 73 | 4e 61 6e 28 70 29 29 72 |{..if(Is|Nan(p))r|
|000011f0| 65 74 75 72 6e 20 70 3b | 0d 09 69 66 28 70 3c 30 |eturn p;|..if(p<0|
|00001200| 2e 30 20 7c 7c 20 70 3e | 31 2e 30 29 72 65 74 75 |.0 || p>|1.0)retu|
|00001210| 72 6e 20 4e 41 4e 3b 0d | 09 72 65 74 75 72 6e 20 |rn NAN;.|.return |
|00001220| 73 71 72 74 28 2d 6c 6f | 67 28 31 2e 30 2d 70 29 |sqrt(-lo|g(1.0-p)|
|00001230| 29 3b 0d 7d 0d 0d 64 6f | 75 62 6c 65 20 4e 6f 72 |);.}..do|uble Nor|
|00001240| 6d 61 6c 32 44 53 61 6d | 70 6c 65 28 76 6f 69 64 |mal2DSam|ple(void|
|00001250| 29 0d 2f 2a 20 72 6d 73 | 20 69 73 20 31 20 2a 2f |)./* rms| is 1 */|
|00001260| 0d 7b 0d 09 72 65 74 75 | 72 6e 20 49 6e 76 65 72 |.{..retu|rn Inver|
|00001270| 73 65 4e 6f 72 6d 61 6c | 32 44 28 55 6e 69 66 6f |seNormal|2D(Unifo|
|00001280| 72 6d 53 61 6d 70 6c 65 | 28 29 29 3b 0d 7d 0d 0d |rmSample|());.}..|
|00001290| 2f 2a 0d 09 49 6e 74 65 | 67 72 61 74 65 5b 65 78 |/*..Inte|grate[ex|
|000012a0| 70 28 2d 2e 35 2a 75 5e | 32 29 2c 7b 75 2c 61 2c |p(-.5*u^|2),{u,a,|
|000012b0| 61 2b 31 2f 73 64 7d 5d | 0d 09 3d 65 78 70 28 2d |a+1/sd}]|..=exp(-|
|000012c0| 2e 35 2a 61 5e 32 29 2a | 49 6e 74 65 67 72 61 74 |.5*a^2)*|Integrat|
|000012d0| 65 5b 65 78 70 28 2d 2e | 35 2a 28 28 61 2b 65 29 |e[exp(-.|5*((a+e)|
|000012e0| 5e 32 2d 61 5e 32 29 29 | 2c 7b 65 2c 30 2c 31 2f |^2-a^2))|,{e,0,1/|
|000012f0| 73 64 7d 5d 0d 09 3d 65 | 78 70 28 2d 2e 35 2a 61 |sd}]..=e|xp(-.5*a|
|00001300| 5e 32 29 2a 49 6e 74 65 | 67 72 61 74 65 5b 65 78 |^2)*Inte|grate[ex|
|00001310| 70 28 2d 2e 35 2a 65 2a | 65 29 2a 65 78 70 28 2d |p(-.5*e*|e)*exp(-|
|00001320| 61 2a 65 29 2c 7b 65 2c | 30 2c 31 2f 73 64 7d 5d |a*e),{e,|0,1/sd}]|
|00001330| 0d 09 3d 65 78 70 28 2d | 2e 35 2a 61 5e 32 29 2a |..=exp(-|.5*a^2)*|
|00001340| 49 6e 74 65 67 72 61 74 | 65 5b 28 31 2d 2e 35 2a |Integrat|e[(1-.5*|
|00001350| 65 2a 65 29 2a 65 78 70 | 28 2d 61 2a 65 29 2c 7b |e*e)*exp|(-a*e),{|
|00001360| 65 2c 30 2c 31 2f 73 64 | 7d 5d 0d 09 3d 65 78 70 |e,0,1/sd|}]..=exp|
|00001370| 28 2d 2e 35 2a 61 5e 32 | 29 2a 28 28 65 78 70 28 |(-.5*a^2|)*((exp(|
|00001380| 2d 61 2f 73 64 29 20 2d | 20 31 29 2f 28 2d 61 29 |-a/sd) -| 1)/(-a)|
|00001390| 2d 2e 35 2a 49 6e 74 65 | 67 72 61 74 65 5b 65 2a |-.5*Inte|grate[e*|
|000013a0| 65 2a 65 78 70 28 2d 61 | 2a 65 29 2c 7b 65 2c 30 |e*exp(-a|*e),{e,0|
|000013b0| 2c 31 2f 73 64 7d 5d 29 | 0d 09 3d 65 78 70 28 2d |,1/sd}])|..=exp(-|
|000013c0| 2e 35 2a 61 5e 32 29 2a | 28 31 2d 65 78 70 28 2d |.5*a^2)*|(1-exp(-|
|000013d0| 61 2f 73 64 29 29 2f 61 | 0d 2a 2f 0d 76 6f 69 64 |a/sd))/a|.*/.void|
|000013e0| 20 42 6f 75 6e 64 65 64 | 4e 6f 72 6d 61 6c 49 6e | Bounded|NormalIn|
|000013f0| 74 65 67 65 72 73 28 72 | 65 67 69 73 74 65 72 20 |tegers(r|egister |
|00001400| 73 68 6f 72 74 20 2a 64 | 69 73 74 72 69 62 75 74 |short *d|istribut|
|00001410| 69 6f 6e 2c 6c 6f 6e 67 | 20 6e 2c 64 6f 75 62 6c |ion,long| n,doubl|
|00001420| 65 20 6d 65 61 6e 2c 64 | 6f 75 62 6c 65 20 73 64 |e mean,d|ouble sd|
|00001430| 0d 09 2c 73 68 6f 72 74 | 20 6d 69 6e 2c 73 68 6f |..,short| min,sho|
|00001440| 72 74 20 6d 61 78 29 0d | 7b 0d 09 72 65 67 69 73 |rt max).|{..regis|
|00001450| 74 65 72 20 73 68 6f 72 | 74 20 69 3b 0d 09 72 65 |ter shor|t i;..re|
|00001460| 67 69 73 74 65 72 20 6c | 6f 6e 67 20 6a 2c 63 6f |gister l|ong j,co|
|00001470| 75 6e 74 2c 76 61 6c 75 | 65 73 2c 72 6f 75 6e 64 |unt,valu|es,round|
|00001480| 3b 0d 09 64 6f 75 62 6c | 65 20 70 2c 70 30 2c 70 |;..doubl|e p,p0,p|
|00001490| 31 2c 78 3b 0d 09 73 68 | 6f 72 74 20 73 68 6f 72 |1,x;..sh|ort shor|
|000014a0| 74 63 75 74 3b 0d 09 0d | 09 6a 3d 30 3b 0d 09 69 |tcut;...|.j=0;..i|
|000014b0| 66 28 49 73 49 6e 66 28 | 73 64 29 29 7b 0d 09 09 |f(IsInf(|sd)){...|
|000014c0| 2f 2a 20 55 6e 69 66 6f | 72 6d 20 64 69 73 74 72 |/* Unifo|rm distr|
|000014d0| 69 62 75 74 69 6f 6e 20 | 6f 76 65 72 20 74 68 65 |ibution |over the|
|000014e0| 20 69 6e 74 65 72 76 61 | 6c 20 5b 6d 69 6e 2c 6d | interva|l [min,m|
|000014f0| 61 78 5d 20 2a 2f 0d 09 | 09 76 61 6c 75 65 73 3d |ax] */..|.values=|
|00001500| 6d 61 78 2d 6d 69 6e 2b | 31 3b 0d 09 09 61 73 73 |max-min+|1;...ass|
|00001510| 65 72 74 28 6e 3c 4c 4f | 4e 47 5f 4d 41 58 2f 76 |ert(n<LO|NG_MAX/v|
|00001520| 61 6c 75 65 73 29 3b 0d | 09 09 72 6f 75 6e 64 3d |alues);.|..round=|
|00001530| 76 61 6c 75 65 73 2f 32 | 3b 0d 09 09 66 6f 72 28 |values/2|;...for(|
|00001540| 69 3d 6d 69 6e 3b 69 3c | 6d 61 78 3b 69 2b 2b 29 |i=min;i<|max;i++)|
|00001550| 7b 0d 09 09 09 63 6f 75 | 6e 74 3d 28 28 69 2d 6d |{....cou|nt=((i-m|
|00001560| 69 6e 2b 31 29 2a 6e 2b | 72 6f 75 6e 64 29 2f 76 |in+1)*n+|round)/v|
|00001570| 61 6c 75 65 73 3b 0d 09 | 09 09 77 68 69 6c 65 28 |alues;..|..while(|
|00001580| 6a 3c 63 6f 75 6e 74 29 | 64 69 73 74 72 69 62 75 |j<count)|distribu|
|00001590| 74 69 6f 6e 5b 6a 2b 2b | 5d 3d 69 3b 0d 09 09 7d |tion[j++|]=i;...}|
|000015a0| 0d 09 7d 65 6c 73 65 7b | 09 0d 09 09 73 68 6f 72 |..}else{|....shor|
|000015b0| 74 63 75 74 3d 73 64 2a | 73 64 3e 6e 3b 09 2f 2a |tcut=sd*|sd>n;./*|
|000015c0| 20 67 75 61 72 61 6e 74 | 65 65 73 20 63 6f 75 6e | guarant|ees coun|
|000015d0| 74 20 77 69 6c 6c 20 65 | 72 72 20 62 79 20 61 74 |t will e|rr by at|
|000015e0| 20 6d 6f 73 74 20 b1 30 | 2e 35 20 2a 2f 0d 09 09 | most .0|.5 */...|
|000015f0| 70 3d 70 30 3d 4e 6f 72 | 6d 61 6c 28 28 6d 69 6e |p=p0=Nor|mal((min|
|00001600| 2d 2e 35 2d 6d 65 61 6e | 29 2f 73 64 29 3b 0d 09 |-.5-mean|)/sd);..|
|00001610| 09 70 31 3d 4e 6f 72 6d | 61 6c 28 28 6d 61 78 2b |.p1=Norm|al((max+|
|00001620| 2e 35 2d 6d 65 61 6e 29 | 2f 73 64 29 2d 70 30 3b |.5-mean)|/sd)-p0;|
|00001630| 0d 09 09 66 6f 72 28 69 | 3d 6d 69 6e 3b 69 3c 6d |...for(i|=min;i<m|
|00001640| 61 78 3b 69 2b 2b 29 7b | 0d 09 09 09 78 3d 28 69 |ax;i++){|....x=(i|
|00001650| 2b 2e 35 2d 6d 65 61 6e | 29 2f 73 64 3b 0d 09 09 |+.5-mean|)/sd;...|
|00001660| 09 69 66 28 73 68 6f 72 | 74 63 75 74 29 70 2b 3d |.if(shor|tcut)p+=|
|00001670| 4e 6f 72 6d 61 6c 50 64 | 66 28 78 29 2a 28 65 78 |NormalPd|f(x)*(ex|
|00001680| 70 28 78 2f 73 64 29 2d | 31 29 2f 78 3b 0d 09 09 |p(x/sd)-|1)/x;...|
|00001690| 09 65 6c 73 65 20 70 3d | 4e 6f 72 6d 61 6c 28 78 |.else p=|Normal(x|
|000016a0| 29 3b 0d 09 09 09 63 6f | 75 6e 74 3d 30 2e 35 2b |);....co|unt=0.5+|
|000016b0| 6e 2a 28 70 2d 70 30 29 | 2f 70 31 3b 0d 09 09 09 |n*(p-p0)|/p1;....|
|000016c0| 77 68 69 6c 65 28 6a 3c | 63 6f 75 6e 74 29 64 69 |while(j<|count)di|
|000016d0| 73 74 72 69 62 75 74 69 | 6f 6e 5b 6a 2b 2b 5d 3d |stributi|on[j++]=|
|000016e0| 69 3b 0d 09 09 7d 0d 09 | 7d 0d 09 77 68 69 6c 65 |i;...}..|}..while|
|000016f0| 28 6a 3c 6e 29 64 69 73 | 74 72 69 62 75 74 69 6f |(j<n)dis|tributio|
|00001700| 6e 5b 6a 2b 2b 5d 3d 6d | 61 78 3b 0d 7d 0d 0d 0d |n[j++]=m|ax;.}...|
|00001710| 23 69 66 20 30 20 2f 2a | 20 41 20 74 65 73 74 20 |#if 0 /*| A test |
|00001720| 70 72 6f 67 72 61 6d 2e | 20 2a 2f 0d 09 76 6f 69 |program.| */..voi|
|00001730| 64 20 6d 61 69 6e 28 29 | 0d 09 7b 0d 09 09 64 6f |d main()|..{...do|
|00001740| 75 62 6c 65 20 78 2c 79 | 2c 73 75 6d 2c 64 78 2c |uble x,y|,sum,dx,|
|00001750| 61 2c 62 2c 6d 65 61 6e | 2c 73 64 3b 0d 09 09 73 |a,b,mean|,sd;...s|
|00001760| 74 61 74 69 63 20 64 6f | 75 62 6c 65 20 7a 5b 31 |tatic do|uble z[1|
|00001770| 30 30 30 5d 3b 0d 09 09 | 69 6e 74 20 69 3b 0d 09 |000];...|int i;..|
|00001780| 09 0d 09 09 52 65 71 75 | 69 72 65 28 30 29 3b 0d |....Requ|ire(0);.|
|00001790| 09 09 73 72 61 6e 64 28 | 63 6c 6f 63 6b 28 29 29 |..srand(|clock())|
|000017a0| 3b 0d 09 09 70 72 69 6e | 74 66 28 22 25 34 73 25 |;...prin|tf("%4s%|
|000017b0| 31 35 73 25 31 35 73 25 | 32 30 73 25 31 35 73 5c |15s%15s%|20s%15s\|
|000017c0| 6e 22 2c 22 78 22 2c 22 | 4e 6f 72 6d 61 6c 50 64 |n","x","|NormalPd|
|000017d0| 66 28 78 29 22 2c 22 4e | 6f 72 6d 61 6c 28 78 29 |f(x)","N|ormal(x)|
|000017e0| 22 2c 22 49 6e 76 65 72 | 73 65 4e 6f 72 6d 61 6c |","Inver|seNormal|
|000017f0| 22 2c 22 45 72 72 6f 72 | 22 29 3b 0d 09 09 66 6f |","Error|");...fo|
|00001800| 72 28 78 3d 2d 34 2e 30 | 3b 78 3c 3d 34 2e 30 3b |r(x=-4.0|;x<=4.0;|
|00001810| 78 2b 3d 32 2e 30 29 7b | 0d 09 09 09 70 72 69 6e |x+=2.0){|....prin|
|00001820| 74 66 28 22 25 34 2e 31 | 66 25 31 35 2e 38 66 25 |tf("%4.1|f%15.8f%|
|00001830| 31 35 2e 38 66 25 32 30 | 2e 34 66 25 31 35 2e 34 |15.8f%20|.4f%15.4|
|00001840| 66 5c 6e 22 2c 0d 09 09 | 09 78 2c 4e 6f 72 6d 61 |f\n",...|.x,Norma|
|00001850| 6c 50 64 66 28 78 29 2c | 4e 6f 72 6d 61 6c 28 78 |lPdf(x),|Normal(x|
|00001860| 29 2c 49 6e 76 65 72 73 | 65 4e 6f 72 6d 61 6c 28 |),Invers|eNormal(|
|00001870| 4e 6f 72 6d 61 6c 28 78 | 29 29 2c 49 6e 76 65 72 |Normal(x|)),Inver|
|00001880| 73 65 4e 6f 72 6d 61 6c | 28 4e 6f 72 6d 61 6c 28 |seNormal|(Normal(|
|00001890| 78 29 29 2d 78 29 3b 0d | 09 09 7d 0d 09 09 73 75 |x))-x);.|..}...su|
|000018a0| 6d 3d 30 2e 30 3b 0d 09 | 09 64 78 3d 30 2e 30 30 |m=0.0;..|.dx=0.00|
|000018b0| 31 3b 0d 09 09 66 6f 72 | 28 78 3d 2d 31 2e 3b 78 |1;...for|(x=-1.;x|
|000018c0| 3c 30 2e 3b 78 2b 3d 64 | 78 29 73 75 6d 2b 3d 4e |<0.;x+=d|x)sum+=N|
|000018d0| 6f 72 6d 61 6c 50 64 66 | 28 78 29 3b 0d 09 09 73 |ormalPdf|(x);...s|
|000018e0| 75 6d 2a 3d 64 78 3b 0d | 09 09 73 75 6d 2d 3d 4e |um*=dx;.|..sum-=N|
|000018f0| 6f 72 6d 61 6c 28 30 2e | 30 29 2d 4e 6f 72 6d 61 |ormal(0.|0)-Norma|
|00001900| 6c 28 2d 31 2e 30 29 3b | 0d 09 09 70 72 69 6e 74 |l(-1.0);|...print|
|00001910| 66 28 22 50 61 72 74 69 | 61 6c 20 69 6e 74 65 67 |f("Parti|al integ|
|00001920| 72 61 6c 20 6f 66 20 4e | 6f 72 6d 61 6c 50 64 66 |ral of N|ormalPdf|
|00001930| 20 65 72 72 6f 72 20 25 | 2e 35 66 5c 6e 22 2c 73 | error %|.5f\n",s|
|00001940| 75 6d 29 3b 0d 09 09 66 | 6f 72 28 69 3d 30 3b 69 |um);...f|or(i=0;i|
|00001950| 3c 31 30 30 30 3b 69 2b | 2b 29 7a 5b 69 5d 3d 4e |<1000;i+|+)z[i]=N|
|00001960| 6f 72 6d 61 6c 53 61 6d | 70 6c 65 28 29 3b 0d 09 |ormalSam|ple();..|
|00001970| 09 6d 65 61 6e 3d 4d 65 | 61 6e 28 7a 2c 31 30 30 |.mean=Me|an(z,100|
|00001980| 30 2c 26 73 64 29 3b 0d | 09 09 70 72 69 6e 74 66 |0,&sd);.|..printf|
|00001990| 28 22 31 30 30 30 20 73 | 61 6d 70 6c 65 73 20 6d |("1000 s|amples m|
|000019a0| 65 61 6e 20 25 2e 32 66 | 20 73 64 20 25 2e 32 66 |ean %.2f| sd %.2f|
|000019b0| 5c 6e 22 2c 6d 65 61 6e | 2c 73 64 29 3b 0d 09 09 |\n",mean|,sd);...|
|000019c0| 70 72 69 6e 74 66 28 22 | 5c 6e 22 29 3b 0d 09 0d |printf("|\n");...|
|000019d0| 09 09 70 72 69 6e 74 66 | 28 22 25 34 73 25 31 35 |..printf|("%4s%15|
|000019e0| 73 25 31 35 73 25 32 30 | 73 25 31 35 73 5c 6e 22 |s%15s%20|s%15s\n"|
|000019f0| 2c 22 78 22 2c 22 4e 6f | 72 6d 61 6c 32 44 50 64 |,"x","No|rmal2DPd|
|00001a00| 66 28 78 29 22 2c 22 4e | 6f 72 6d 61 6c 32 44 28 |f(x)","N|ormal2D(|
|00001a10| 78 29 22 2c 22 49 6e 76 | 65 72 73 65 4e 6f 72 6d |x)","Inv|erseNorm|
|00001a20| 61 6c 32 44 22 2c 22 45 | 72 72 6f 72 22 29 3b 0d |al2D","E|rror");.|
|00001a30| 09 09 66 6f 72 28 78 3d | 2d 31 2e 3b 78 3c 3d 35 |..for(x=|-1.;x<=5|
|00001a40| 2e 30 3b 78 2b 3d 31 2e | 30 29 7b 0d 09 09 09 70 |.0;x+=1.|0){....p|
|00001a50| 72 69 6e 74 66 28 22 25 | 34 2e 31 66 25 31 35 2e |rintf("%|4.1f%15.|
|00001a60| 38 66 25 31 35 2e 38 66 | 25 32 30 2e 34 66 25 31 |8f%15.8f|%20.4f%1|
|00001a70| 35 2e 34 66 5c 6e 22 2c | 0d 09 09 09 78 2c 4e 6f |5.4f\n",|....x,No|
|00001a80| 72 6d 61 6c 32 44 50 64 | 66 28 78 29 2c 4e 6f 72 |rmal2DPd|f(x),Nor|
|00001a90| 6d 61 6c 32 44 28 78 29 | 2c 49 6e 76 65 72 73 65 |mal2D(x)|,Inverse|
|00001aa0| 4e 6f 72 6d 61 6c 32 44 | 28 4e 6f 72 6d 61 6c 32 |Normal2D|(Normal2|
|00001ab0| 44 28 78 29 29 2c 49 6e | 76 65 72 73 65 4e 6f 72 |D(x)),In|verseNor|
|00001ac0| 6d 61 6c 32 44 28 4e 6f | 72 6d 61 6c 32 44 28 78 |mal2D(No|rmal2D(x|
|00001ad0| 29 29 2d 78 29 3b 0d 09 | 09 7d 0d 09 09 73 75 6d |))-x);..|.}...sum|
|00001ae0| 3d 30 2e 30 3b 0d 09 09 | 64 78 3d 30 2e 30 30 30 |=0.0;...|dx=0.000|
|00001af0| 31 3b 0d 09 09 66 6f 72 | 28 78 3d 30 3b 78 3c 31 |1;...for|(x=0;x<1|
|00001b00| 2e 3b 78 2b 3d 64 78 29 | 73 75 6d 2b 3d 4e 6f 72 |.;x+=dx)|sum+=Nor|
|00001b10| 6d 61 6c 32 44 50 64 66 | 28 78 29 3b 0d 09 09 73 |mal2DPdf|(x);...s|
|00001b20| 75 6d 2a 3d 64 78 3b 0d | 09 09 73 75 6d 2d 3d 4e |um*=dx;.|..sum-=N|
|00001b30| 6f 72 6d 61 6c 32 44 28 | 31 2e 30 29 3b 0d 09 09 |ormal2D(|1.0);...|
|00001b40| 70 72 69 6e 74 66 28 22 | 50 61 72 74 69 61 6c 20 |printf("|Partial |
|00001b50| 69 6e 74 65 67 72 61 6c | 20 6f 66 20 4e 6f 72 6d |integral| of Norm|
|00001b60| 61 6c 32 44 50 64 66 20 | 65 72 72 6f 72 20 25 2e |al2DPdf |error %.|
|00001b70| 35 66 5c 6e 22 2c 73 75 | 6d 29 3b 0d 09 09 66 6f |5f\n",su|m);...fo|
|00001b80| 72 28 69 3d 30 3b 69 3c | 31 30 30 30 3b 69 2b 2b |r(i=0;i<|1000;i++|
|00001b90| 29 7a 5b 69 5d 3d 4e 6f | 72 6d 61 6c 32 44 53 61 |)z[i]=No|rmal2DSa|
|00001ba0| 6d 70 6c 65 28 29 3b 0d | 09 09 6d 65 61 6e 3d 4d |mple();.|..mean=M|
|00001bb0| 65 61 6e 28 7a 2c 31 30 | 30 30 2c 26 73 64 29 3b |ean(z,10|00,&sd);|
|00001bc0| 0d 09 09 70 72 69 6e 74 | 66 28 22 31 30 30 30 20 |...print|f("1000 |
|00001bd0| 73 61 6d 70 6c 65 73 20 | 72 6d 73 20 25 2e 32 66 |samples |rms %.2f|
|00001be0| 5c 6e 22 2c 73 71 72 74 | 28 6d 65 61 6e 2a 6d 65 |\n",sqrt|(mean*me|
|00001bf0| 61 6e 2b 73 64 2a 73 64 | 29 29 3b 0d 09 09 70 72 |an+sd*sd|));...pr|
|00001c00| 69 6e 74 66 28 22 5c 6e | 22 29 3b 0d 09 09 66 6f |intf("\n|");...fo|
|00001c10| 72 28 69 3d 30 3b 69 3c | 31 30 30 30 3b 69 2b 2b |r(i=0;i<|1000;i++|
|00001c20| 29 7b 0d 09 09 09 78 3d | 4e 6f 72 6d 61 6c 53 61 |){....x=|NormalSa|
|00001c30| 6d 70 6c 65 28 29 3b 0d | 09 09 09 79 3d 4e 6f 72 |mple();.|...y=Nor|
|00001c40| 6d 61 6c 53 61 6d 70 6c | 65 28 29 3b 0d 09 09 09 |malSampl|e();....|
|00001c50| 7a 5b 69 5d 3d 73 71 72 | 74 28 28 78 2a 78 2b 79 |z[i]=sqr|t((x*x+y|
|00001c60| 2a 79 29 2f 32 2e 29 3b | 0d 09 09 7d 0d 09 09 6d |*y)/2.);|...}...m|
|00001c70| 65 61 6e 3d 4d 65 61 6e | 28 7a 2c 31 30 30 30 2c |ean=Mean|(z,1000,|
|00001c80| 26 73 64 29 3b 0d 09 09 | 70 72 69 6e 74 66 28 22 |&sd);...|printf("|
|00001c90| 31 30 30 30 20 28 78 2c | 79 29 20 6e 6f 72 6d 61 |1000 (x,|y) norma|
|00001ca0| 6c 20 73 61 6d 70 6c 65 | 73 20 77 69 74 68 20 73 |l sample|s with s|
|00001cb0| 64 20 32 5e 2d 30 2e 35 | 20 68 61 76 65 20 72 6d |d 2^-0.5| have rm|
|00001cc0| 73 20 68 79 70 6f 74 65 | 6e 75 73 65 20 6f 66 20 |s hypote|nuse of |
|00001cd0| 25 2e 32 66 5c 6e 22 2c | 73 71 72 74 28 6d 65 61 |%.2f\n",|sqrt(mea|
|00001ce0| 6e 2a 6d 65 61 6e 2b 73 | 64 2a 73 64 29 29 3b 0d |n*mean+s|d*sd));.|
|00001cf0| 09 09 70 72 69 6e 74 66 | 28 22 5c 6e 22 29 3b 0d |..printf|("\n");.|
|00001d00| 09 0d 09 09 61 3d 34 2e | 30 2a 61 74 61 6e 28 31 |....a=4.|0*atan(1|
|00001d10| 2e 30 29 3b 0d 09 09 69 | 66 28 61 21 3d 50 49 29 |.0);...i|f(a!=PI)|
|00001d20| 70 72 69 6e 74 66 28 22 | 34 2a 61 74 61 6e 28 31 |printf("|4*atan(1|
|00001d30| 29 2d 50 49 20 25 2e 31 | 39 66 5c 6e 22 2c 61 2d |)-PI %.1|9f\n",a-|
|00001d40| 50 49 29 3b 0d 09 09 61 | 3d 6c 6f 67 28 61 29 3b |PI);...a|=log(a);|
|00001d50| 0d 09 09 69 66 28 61 21 | 3d 4c 4f 47 50 49 29 70 |...if(a!|=LOGPI)p|
|00001d60| 72 69 6e 74 66 28 22 45 | 72 72 6f 72 3a 20 6c 6f |rintf("E|rror: lo|
|00001d70| 67 28 50 49 29 20 25 2e | 31 39 66 2c 20 65 72 72 |g(PI) %.|19f, err|
|00001d80| 6f 72 20 69 6e 20 4c 4f | 47 50 49 20 25 2e 31 39 |or in LO|GPI %.19|
|00001d90| 66 5c 6e 22 2c 61 2c 4c | 4f 47 50 49 2d 61 29 3b |f\n",a,L|OGPI-a);|
|00001da0| 0d 09 09 61 3d 6c 6f 67 | 28 32 2e 30 29 3b 0d 09 |...a=log|(2.0);..|
|00001db0| 09 69 66 28 61 21 3d 4c | 4f 47 32 29 70 72 69 6e |.if(a!=L|OG2)prin|
|00001dc0| 74 66 28 22 45 72 72 6f | 72 3a 20 6c 6f 67 28 32 |tf("Erro|r: log(2|
|00001dd0| 29 20 25 2e 31 39 66 2c | 20 65 72 72 6f 72 20 69 |) %.19f,| error i|
|00001de0| 6e 20 4c 4f 47 32 20 25 | 2e 31 39 66 5c 6e 22 2c |n LOG2 %|.19f\n",|
|00001df0| 61 2c 4c 4f 47 32 2d 61 | 29 3b 0d 09 7d 0d 23 65 |a,LOG2-a|);..}.#e|
|00001e00| 6e 64 69 66 0d 00 00 00 | 00 00 00 00 00 00 00 00 |ndif....|........|
|00001e10| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001e20| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001e30| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001e40| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001e50| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001e60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001e70| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001e80| 00 00 01 00 00 00 02 2a | 00 00 01 2a 00 00 00 52 |.......*|...*...R|
|00001e90| 28 78 29 0d 2f 2a 20 47 | 61 75 73 73 69 61 6e 20 |(x)./* G|aussian |
|00001ea0| 70 64 66 20 2a 2f 0d 64 | 6f 75 62 6c 65 20 78 3b |pdf */.d|ouble x;|
|00001eb0| 08 4e 6f 72 6d 61 6c 2e | 63 72 02 00 00 00 54 45 |.Normal.|cr....TE|
|00001ec0| 58 54 43 57 49 45 01 00 | 00 64 03 c0 00 00 00 00 |XTCWIE..|.d......|
|00001ed0| 00 00 54 45 58 54 43 57 | 49 45 01 00 00 64 03 c0 |..TEXTCW|IE...d..|
|00001ee0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001ef0| 00 00 a0 fd 09 02 00 00 | 1d 85 00 00 02 7c 61 74 |........|.....|at|
|00001f00| 69 76 65 20 6e 6f 72 6d | 61 6c 20 64 69 73 74 72 |ive norm|al distr|
|00001f10| 69 62 75 74 69 6f 6e 2e | 20 46 72 6f 6d 20 41 62 |ibution.| From Ab|
|00001f20| 72 61 6d 6f 77 69 74 7a | 20 61 6e 64 20 53 74 65 |ramowitz| and Ste|
|00001f30| 67 75 6e 20 45 71 2e 20 | 28 32 36 2e 32 2e 31 37 |gun Eq. |(26.2.17|
|00001f40| 29 2e 0d 45 72 72 6f 72 | 20 7c 65 7c 3c 37 2e 35 |)..Error| |e|<7.5|
|00001f50| 20 31 30 5e 2d 38 0d 2a | 2f 0d 7b 0d 09 64 6f 75 | 10^-8.*|/.{..dou|
|00001f60| 62 6c 65 20 50 2c 74 2c | 74 74 3b 0d 09 0d 09 69 |ble P,t,|tt;....i|
|00001f70| 66 28 78 3c 30 2e 30 29 | 20 72 65 74 75 72 6e 20 |f(x<0.0)| return |
|00001f80| 00 00 00 d2 00 0a 00 00 | 0c 71 00 00 0c 7a 09 4e |........|.q...z.N|
|00001f90| 6f 72 6d 61 6c 50 64 66 | 00 00 0d 08 00 00 0d 0e |ormalPdf|........|
|00001fa0| 07 4e 6f 72 6d 61 6c 00 | 00 00 0e 56 00 00 0e 63 |.Normal.|...V...c|
|00001fb0| 0d 49 6e 76 65 72 73 65 | 4e 6f 72 6d 61 6c 00 00 |.Inverse|Normal..|
|00001fc0| 0f db 00 00 0f e7 0d 4e | 6f 72 6d 61 6c 53 61 6d |.......N|ormalSam|
|00001fd0| 70 6c 65 00 00 00 10 22 | 00 00 10 2d 0b 4e 6f 72 |ple...."|...-.Nor|
|00001fe0| 6d 61 6c 32 44 50 64 66 | 00 00 11 38 00 00 11 40 |mal2DPdf|...8...@|
|00001ff0| 09 4e 6f 72 6d 61 6c 32 | 44 00 00 00 11 cc 00 00 |.Normal2|D.......|
|00002000| 11 db 0f 49 6e 76 65 72 | 73 65 4e 6f 72 6d 61 6c |...Inver|seNormal|
|00002010| 32 44 00 00 12 43 00 00 | 12 51 0f 4e 6f 72 6d 61 |2D...C..|.Q.Norma|
|00002020| 6c 32 44 53 61 6d 70 6c | 65 00 00 00 13 e7 00 00 |l2DSampl|e.......|
|00002030| 13 fc 15 42 6f 75 6e 64 | 65 64 4e 6f 72 6d 61 6c |...Bound|edNormal|
|00002040| 49 6e 74 65 67 65 72 73 | 00 00 16 80 00 00 16 84 |Integers|........|
|00002050| 05 6d 61 69 6e 00 00 00 | 00 48 00 09 4d 6f 6e 61 |.main...|.H..Mona|
|00002060| 63 6f 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |co......|........|
|00002070| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 03 00 04 |........|........|
|00002080| 00 3c 00 03 01 8c 02 7d | 00 3c 00 03 01 8c 02 7d |.<.....}|.<.....}|
|00002090| ac 33 5d 42 00 00 0b 3b | 00 00 0b 3f 00 00 09 1b |.3]B...;|...?....|
|000020a0| 00 00 00 00 00 04 00 01 | 00 01 00 00 01 00 00 00 |........|........|
|000020b0| 02 2a 00 00 01 2a 00 00 | 00 52 01 99 5f e8 1c 48 |.*...*..|.R.._..H|
|000020c0| 00 00 00 1c 00 52 00 01 | 4d 50 53 52 00 01 00 12 |.....R..|MPSR....|
|000020d0| 4d 57 42 42 00 00 00 2a | 03 ef ff ff 00 00 00 00 |MWBB...*|........|
|000020e0| 00 00 00 00 03 ed ff ff | 00 00 00 d6 00 00 00 00 |........|........|
|000020f0| 03 f0 ff ff 00 00 01 22 | 00 00 00 00 00 00 00 00 |......."|........|
+--------+-------------------------+-------------------------+--------+--------+